livellosegreto.it is one of the many independent Mastodon servers you can use to participate in the fediverse.
Livello Segreto è il social etico che ha rispetto di te e del tuo tempo.

Administered by:

Server stats:

1.2K
active users

#mathematicalpsychology

0 posts0 participants0 posts today
Ross Gayler<p>The next VSAonline webinar is at 17:00 UTC (not the usual time), Monday 27 January.</p><p>Zoom: <a href="https://ltu-se.zoom.us/j/65564790287" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">ltu-se.zoom.us/j/65564790287</span><span class="invisible"></span></a> </p><p>WEB: <a href="https://bit.ly/vsaonline" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">bit.ly/vsaonline</span><span class="invisible"></span></a> </p><p>Speaker: Anthony Thomas from UC Davis, USA</p><p>Title: ”Sketching a Picture of Vector Symbolic Architectures”</p><p>Abstract : Sketching algorithms are a broad area of research in theoretical computer science and numerical analysis that aim to distil data into a simple summary, called a "sketch," that retains some essential notion of structure while being much more efficient to store, query, and transmit.</p><p>Vector-symbolic architectures (VSAs) are an approach to computing on data represented using random vectors, and provide an elegant conceptual framework for realizing a wide variety of data structures and algorithms in a way that lends itself to implementation in highly-parallel and energy-efficient computer hardware.</p><p>Sketching algorithms and VSA have a substantial degree of consonance in their methods, motivations, and applications. In this tutorial style talk, I will discuss some of the connections between these two fields, focusing, in particular, on the connections between VSA and tensor-sketches, a family of sketching algorithms concerned with the setting in which the data being sketched can be decomposed into Kronecker (tensor) products between more primitive objects. This is exactly the situation of interest in VSA and the two fields have arrived at strikingly similar solutions to this problem.</p><p><a href="https://aus.social/tags/VectorSymbolicArchitectures" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>VectorSymbolicArchitectures</span></a> <a href="https://aus.social/tags/VSA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>VSA</span></a> <a href="https://aus.social/tags/HyperdimensionalComputing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HyperdimensionalComputing</span></a> <a href="https://aus.social/tags/HDC" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HDC</span></a> <a href="https://aus.social/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://aus.social/tags/ML" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ML</span></a> <a href="https://aus.social/tags/ComputationalCognitiveScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ComputationalCognitiveScience</span></a> <a href="https://aus.social/tags/CompCogSci" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CompCogSci</span></a> <a href="https://aus.social/tags/MathematicalPsychology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathematicalPsychology</span></a> <a href="https://aus.social/tags/MathPsych" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathPsych</span></a> <a href="https://aus.social/tags/CognitiveScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CognitiveScience</span></a> <a href="https://aus.social/tags/CogSci" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CogSci</span></a> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/cogsci" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>cogsci</span></a></span></p>
Ross Gayler<p>Maths/CogSci/MathPsych lazyweb: Are there any algebras in which you have subtraction but don't have negative values? Pointers appreciated. I am hoping that the abstract maths might shed some light on a problem in cognitive modelling.</p><p>The context is that I am interested in formal models of cognitive representations and I want to represent things (e.g. cats), don't believe that we should be able to represent negated things (i.e. I don't think it should be able to represent anti-cats), but it makes sense to subtract representations (e.g. remove the representation of a cat from the representation of a cat and a dog, leaving only the representation of the dog).</p><p>This *might* also be related to non-negative factorisation: (<a href="https://en.wikipedia.org/wiki/Non-negative_matrix_factorization" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">en.wikipedia.org/wiki/Non-nega</span><span class="invisible">tive_matrix_factorization</span></a>) in that we want to represent a situation in terms of parts and don't allow anti-parts.</p><p><a href="https://aus.social/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://aus.social/tags/algebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algebra</span></a> <a href="https://aus.social/tags/AbstractAlgebra" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AbstractAlgebra</span></a> <a href="https://aus.social/tags/CogSci" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CogSci</span></a> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/cogsci" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>cogsci</span></a></span> <a href="https://aus.social/tags/CognitiveScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CognitiveScience</span></a> <a href="https://aus.social/tags/MathPsych" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathPsych</span></a> <a href="https://aus.social/tags/MathematicalPsychology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MathematicalPsychology</span></a></p>