livellosegreto.it is one of the many independent Mastodon servers you can use to participate in the fediverse.
Livello Segreto è il social etico che ha rispetto di te e del tuo tempo.

Administered by:

Server stats:

1.2K
active users

#AutomaticDifferentiation

0 posts0 participants0 posts today
Andreas<p>Have you ever thought 💡 of using JAX as 🧮 <a href="https://mathstodon.xyz/tags/automaticdifferentiation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>automaticdifferentiation</span></a> engine in 💻 finite element simulations? Boost the performance 🏇 of computationally-expensive hyperelastic material models with <a href="https://mathstodon.xyz/tags/jit" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>jit</span></a> in 🔍 FElupe! 🚀 🚀</p><p><a href="https://github.com/adtzlr/felupe" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/adtzlr/felupe</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>python</span></a> <a href="https://mathstodon.xyz/tags/jax" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>jax</span></a> <a href="https://mathstodon.xyz/tags/finiteelementmethod" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>finiteelementmethod</span></a> <a href="https://mathstodon.xyz/tags/scientificcomputing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>scientificcomputing</span></a> <a href="https://mathstodon.xyz/tags/computationalmechanics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>computationalmechanics</span></a> <a href="https://mathstodon.xyz/tags/fea" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fea</span></a> <a href="https://mathstodon.xyz/tags/fem" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fem</span></a> <a href="https://mathstodon.xyz/tags/hyperelasticity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hyperelasticity</span></a></p>
Virgile Andreani<p>I really enjoyed the talk by Manuel Drehwald at <a href="https://fosstodon.org/tags/RustSciComp23" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RustSciComp23</span></a> who drew the lines of an exciting future for <a href="https://fosstodon.org/tags/AutomaticDifferentiation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AutomaticDifferentiation</span></a> in <a href="https://fosstodon.org/tags/Rust" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Rust</span></a> with <a href="https://fosstodon.org/tags/LLVM" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLVM</span></a> <a href="https://fosstodon.org/tags/Enzyme" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Enzyme</span></a> , which should be directly integrated into the compiler at an horizon of a couple of months.</p><p>If I understood correctly, the idea is to differentiate code at the LLVM IR level, *after optimization* (and to do another pass of optimization after that). This can produce faster code than the AD engines that operate at the source code level.</p>
Marco 🌳 Zocca<p>not to brag or anything but my ad-delcont library has been an inspiration to this :) </p><p><a href="https://github.com/konn/ad-delcont-primop" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/konn/ad-delcont-pri</span><span class="invisible">mop</span></a> </p><p>this is a line of work that uses delimited continuations to implement reverse-mode <a href="https://sigmoid.social/tags/AutomaticDifferentiation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AutomaticDifferentiation</span></a> , rather than reifing the program into a graph. As such, it enables a nice purely functional API and this latest incarnation performs pretty well too</p><p><a href="https://sigmoid.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>machinelearning</span></a> <a href="https://sigmoid.social/tags/functionalprogramming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>functionalprogramming</span></a> <a href="https://sigmoid.social/tags/haskell" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>haskell</span></a></p>