livellosegreto.it is one of the many independent Mastodon servers you can use to participate in the fediverse.
Livello Segreto è il social etico che ha rispetto di te e del tuo tempo.

Administered by:

Server stats:

1.2K
active users

#ocaml

1 post1 participant0 posts today

tori will be rewritten in another programming language. But which one? The contenders are OCaml, Haskell and Rust and the decision will be made by implementing a simplistic subset of its functionality in an experimental project called iganaq.

For more details, the reasons behind the rewrite and the candidate languages, see the announcement here:

tori.jutty.dev/updates/iganaq

Or go straight to the code, where the OCaml implementation is almost done already:

brew.bsd.cafe/tori/iganaq

tori.jutty.devExploring alternative tori implementations ~ toriThanks to some free time during the university break, I started some work on porting tori to Void and Alpine Linux. This…

This seems a very cool and interesting evolution for a stable and productive language, focused on real needs in the industry. The focus on making sure it all integrates well and works with legacy code is astounding. Very nice. Ocaml future seems great.

--

Making OCaml Safe for Performance Engineering | Lobsters

lobste.rs/s/ujvpdn/making_ocam

lobste.rsMaking OCaml Safe for Performance Engineering | Lobsters

OCaml Weekly News, 25 Mar 2025: * Ocsigen migrating to effect-based concurrency
* Slipshow!
* Odoc 3.0 released!
* 4th editor tooling dev-meeting: 28th of March
* The Call for Papers for FUNARCH2025 is open!
* Proposal for the replacement of Set and Map in the stdlib
* A tool to reverse debug OCaml (and other binaries) runs
* Feedback request: New lesson on ~Lazy~
* OCaml Workshop 2025 at ICFP/SPLASH - announcement and call for proposals alan.petitepomme.net/cwn/2025. #OCaml #OCamlPlanet

alan.petitepomme.netOCaml Weekly News

Simple Ways to Run OCaml Code: When people think of OCaml they are usually thinking of compiling code to a
binary before they are able to run it. While most OCaml code is indeed compiled
to binaries, you don’t really need to do this, especially while you’re learning
the language and are mostly playing with small exercises.

Imagine you have something like this in a file named hello.ml:
let () = print_endline "Hello, world!"

You can compile this if… batsov.com/articles/2025/02/23 #OCaml #OCamlPlanet

Just what the internet needed: another attempt to explain #monads! 🙄 But this time I'm comparing #Haskell and #OCaml approaches to show why #typeclasses make all the difference. Turns out those JavaScript Promise analogies only tell half the story…

https://hackers.pub/@hongminhee/2025/monads

hackers.pub · Monads: Beyond Simple Analogies—Reflections on Functional Programming ParadigmsWhile exploring functional programming languages, I've been reflecting on how different communities approach similar concepts. One pattern that seems particularly fascinating is how Haskell and OCaml communities differ in their embrace of monads as an abstraction tool. The Elegant Power of Monads in Haskell It's common to hear monads explained through analogies to concepts like JavaScript's Promise or jQuery chains. While these comparisons provide an entry point, they might miss what makes monads truly beautiful and powerful in Haskell's ecosystem. The real strength appears to lie in the Monad typeclass itself. This elegant abstraction allows for creating generic functions and types that work with any type that shares the monad property. This seems to offer a profound unification of concepts that might initially appear unrelated: You can write code once that works across many contexts (Maybe, [], IO, State, etc.) Generic functions like sequence, mapM, and others become available across all monadic types The same patterns and mental models apply consistently across different computational contexts For example, a simple conditional function like this works beautifully in any monadic context: whenM :: Monad m => m Bool -> m () -> m () whenM condition action = do result <- condition if result then action else return () Whether dealing with potentially missing values, asynchronous operations, or state transformations, the same function can be employed without modification. There's something genuinely satisfying about this level of abstraction and reuse. OCaml's Different Approach Interestingly, the OCaml community seems less enthusiastic about monads as a primary abstraction tool. This might stem from several factors related to language design: Structural Differences OCaml lacks built-in typeclass support, relying instead on its module system and functors. While powerful in its own right, this approach might not make monad abstractions feel as natural or convenient: (* OCaml monad implementation requires more boilerplate *) module type MONAD = sig type 'a t val return : 'a -> 'a t val bind : 'a t -> ('a -> 'b t) -> 'b t end module OptionMonad : MONAD with type 'a t = 'a option = struct type 'a t = 'a option let return x = Some x let bind m f = match m with | None -> None | Some x -> f x end OCaml also doesn't offer syntactic sugar like Haskell's do notation, which makes monadic code in Haskell considerably more readable and expressive: -- Haskell's elegant do notation userInfo = do name <- getLine age <- readLn return (name, age) Compared to the more verbose OCaml equivalent: let user_info = get_line >>= fun name -> read_ln >>= fun age -> return (name, age) The readability difference becomes even more pronounced in more complex monadic operations. Philosophical Differences Beyond syntax, the languages differ in their fundamental approach to effects: Haskell is purely functional, making monads essential for managing effects in a principled way OCaml permits direct side effects, often making monadic abstractions optional This allows OCaml programmers to write more direct code when appropriate: (* Direct style in OCaml *) let get_user_info () = print_string "Name: "; let name = read_line () in print_string "Age: "; let age = int_of_string (read_line ()) in (name, age) OCaml's approach might favor pragmatism and directness in many cases, with programmers often preferring: Direct use of option and result types Module-level abstractions through functors Continuation-passing style when needed While this directness can be beneficial for immediate readability, it might come at the cost of some of the elegant uniformity that Haskell's monadic approach provides. Reflections on Language Design These differences highlight how programming language design shapes the idioms and patterns that emerge within their communities. Neither approach is objectively superior—they represent different philosophies about abstraction, explicitness, and the role of the type system. Haskell's approach encourages a high level of abstraction and consistency across different computational contexts, which can feel particularly satisfying when working with complex, interconnected systems. There's something intellectually pleasing about solving a problem once and having that solution generalize across many contexts. OCaml often favors more direct solutions that might be easier to reason about locally, though potentially at the cost of less uniformity across the codebase. This approach has its own virtues, particularly for systems where immediate comprehensibility is paramount. After working with both paradigms, I find myself drawn to the consistent abstractions that Haskell's approach provides, while still appreciating the pragmatic clarity that OCaml can offer in certain situations. The typeclasses and syntactic support in Haskell seem to unlock a particularly elegant way of structuring code that, while perhaps requiring a steeper initial learning curve, offers a uniquely satisfying programming experience. What patterns have you noticed in how different programming language communities approach similar problems? And have you found yourself drawn to the elegant abstractions of Haskell or the pragmatic approach of OCaml?

Monads: Beyond Simple Analogies—Reflections on Functional Programming Paradigms

hackers.pub/@hongminhee/2025/m

hackers.pub · Monads: Beyond Simple Analogies—Reflections on Functional Programming ParadigmsWhile exploring functional programming languages, I've been reflecting on how different communities approach similar concepts. One pattern that seems particularly fascinating is how Haskell and OCaml communities differ in their embrace of monads as an abstraction tool. The Elegant Power of Monads in Haskell It's common to hear monads explained through analogies to concepts like JavaScript's Promise or jQuery chains. While these comparisons provide an entry point, they might miss what makes monads truly beautiful and powerful in Haskell's ecosystem. The real strength appears to lie in the Monad typeclass itself. This elegant abstraction allows for creating generic functions and types that work with any type that shares the monad property. This seems to offer a profound unification of concepts that might initially appear unrelated: You can write code once that works across many contexts (Maybe, [], IO, State, etc.) Generic functions like sequence, mapM, and others become available across all monadic types The same patterns and mental models apply consistently across different computational contexts For example, a simple conditional function like this works beautifully in any monadic context: whenM :: Monad m => m Bool -> m () -> m () whenM condition action = do result <- condition if result then action else return () Whether dealing with potentially missing values, asynchronous operations, or state transformations, the same function can be employed without modification. There's something genuinely satisfying about this level of abstraction and reuse. OCaml's Different Approach Interestingly, the OCaml community seems less enthusiastic about monads as a primary abstraction tool. This might stem from several factors related to language design: Structural Differences OCaml lacks built-in typeclass support, relying instead on its module system and functors. While powerful in its own right, this approach might not make monad abstractions feel as natural or convenient: (* OCaml monad implementation requires more boilerplate *) module type MONAD = sig type 'a t val return : 'a -> 'a t val bind : 'a t -> ('a -> 'b t) -> 'b t end module OptionMonad : MONAD with type 'a t = 'a option = struct type 'a t = 'a option let return x = Some x let bind m f = match m with | None -> None | Some x -> f x end OCaml also doesn't offer syntactic sugar like Haskell's do notation, which makes monadic code in Haskell considerably more readable and expressive: -- Haskell's elegant do notation userInfo = do name <- getLine age <- readLn return (name, age) Compared to the more verbose OCaml equivalent: let user_info = get_line >>= fun name -> read_ln >>= fun age -> return (name, age) The readability difference becomes even more pronounced in more complex monadic operations. Philosophical Differences Beyond syntax, the languages differ in their fundamental approach to effects: Haskell is purely functional, making monads essential for managing effects in a principled way OCaml permits direct side effects, often making monadic abstractions optional This allows OCaml programmers to write more direct code when appropriate: (* Direct style in OCaml *) let get_user_info () = print_string "Name: "; let name = read_line () in print_string "Age: "; let age = int_of_string (read_line ()) in (name, age) OCaml's approach might favor pragmatism and directness in many cases, with programmers often preferring: Direct use of option and result types Module-level abstractions through functors Continuation-passing style when needed While this directness can be beneficial for immediate readability, it might come at the cost of some of the elegant uniformity that Haskell's monadic approach provides. Reflections on Language Design These differences highlight how programming language design shapes the idioms and patterns that emerge within their communities. Neither approach is objectively superior—they represent different philosophies about abstraction, explicitness, and the role of the type system. Haskell's approach encourages a high level of abstraction and consistency across different computational contexts, which can feel particularly satisfying when working with complex, interconnected systems. There's something intellectually pleasing about solving a problem once and having that solution generalize across many contexts. OCaml often favors more direct solutions that might be easier to reason about locally, though potentially at the cost of less uniformity across the codebase. This approach has its own virtues, particularly for systems where immediate comprehensibility is paramount. After working with both paradigms, I find myself drawn to the consistent abstractions that Haskell's approach provides, while still appreciating the pragmatic clarity that OCaml can offer in certain situations. The typeclasses and syntactic support in Haskell seem to unlock a particularly elegant way of structuring code that, while perhaps requiring a steeper initial learning curve, offers a uniquely satisfying programming experience. What patterns have you noticed in how different programming language communities approach similar problems? And have you found yourself drawn to the elegant abstractions of Haskell or the pragmatic approach of OCaml?